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Effective Length Factor for Column in Frame with

Girders on Elastic Foundation

F.Y. Al-Ghalibi

Abstract— This paper considered the effects of elastic foundation on effective length factor calculations using subassembly model for braced
and unbraced frames, the girders far ends condition are modeled as rigid, fixed, or hinged. The derivation is under same assumptions of conven-
tional effective length factor (K-factor) using two approaches. The first approach considered the effects of elastic foundation and girders far ends
conditions by depending on 31 and 2 parameters, the general modified K-factor equations have been derived for braced and unbraced frame us-
ing slop-deflection method. In the second approach, formulae of stiffness modification parameter ‘y’, which modify the relative columns to beams
stiffness factor ‘G’ are calculated with direct use of G in the US National codes alignment chart. Approximate modified K-factor formulae are pro-
posed for braced and unbraced frames. The Approximate proposed modified K-factor equations are suitable for practical use. Numerical exam-
ples are presented to illustrate the effects of elastic foundation taken into consideration girders far ends conditions. The Results showed that the
amount of elastic foundation modulus influenced the modified K-factor values and the stiffness of elastic foundation must be taken into account in

K-factor calculations. Generally, modified K-factor values decrease with increasing of stiffness of the elastic foundation.

Index Terms— Stability, stiffness, elastic foundation, modified K-factor, stability functions, braced-frame, unbraced frame.

1 INTRODUCTION

HE importance of K-factor calculation has increased since

the middle of the last century. K-factor formulations and

applications are widely used in U.S. specifications such as
AISC-LRFD, AISC-ASD, ACI (318), AASHTO and many text-
books. In the structural engineering, the calculation process of
effective length factors are one of the most important applica-
tions spatially in the field of second order analysis and mem-
bers slenderness. K-factor is widely used in the field of ad-
vanced structural analysis, design, buckling issues and struc-
tural stability. The studies, research and many references
showed K-factor importance and effects on the behavior of
structural analysis and design. The value of K-factor is varia-
ble and it’'s depending upon many factors, those factors are
related to structure’s dimensions, types of supports, frame’s
geometry, shape of members, type of member’s material, and
loading’s case. The derivation of K-factor equation is based on
calculation assumptions, these assumptions are simplified the
modeling and calculation of K-factor. For example, the as-
sumption of simultaneously buckling of all columns in one
story with an idealized subassembly model used to prepare
the alignment charts, this assumption was proposed by Julian
and Lawrence(1959). LeMessurier(1977)modified Julian and
Lawrence’s assumption based on considering the columns in a
one story buckle simultaneously and the strong column
braced the weak column or that carry high axial load. Depend-
ing on this assumption, LeMessurier applied some types of
correction factor to the alignment charts.
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Lui(1992)proposed simple and more effective method in eval-
uating the K-factor in sway frame, the method considered
both instability of member and frame. Hu and Lai (1986) pro-
posed a computer programming method to calculate the K-
factors. In that computer program, the modeling of element
was considered the effects of axial force for typical offshore
structures with ends rotational spring and translational elastic
springs at a distance from element end. Yura(1971)studied the
K-factor calculation for unbraced frame, his strategy involved
reducing the calculation process by modeling the problem as
an equivalent pinned-ends braced columns. Duan and
Chen(1988)proposed a modification to K-factor’s calculation
for braced framed column to increase the accuracy of K-
factor’s calculation by presenting a modification to G factors
which are used in US National codes alignment charts by con-
sidering the effect of columns far-ends condition in the above
and below the column under consideration. Also, Duan and
Chen (1988) modified K-factor calculation for unbraced
framed column by taking into account the effect of columns
far ends condition in the above and below the considered col-
umn. Their work involved modifying G factors used in US
National codes alignment charts. Chen et al(1993a) suggested
a new method to calculate K-factor for braced and unbraced
column in frame restrained by tapered girder with various
girders far end conditions. The model improved the conven-
tional G factor by girder stiffness modification parameter a.
Chen et al (1993a) discussed the ACI (318-89) simplified equa-
tions and indicated some comments and limitations used for
simplified ACIl-code K-factor equations. Dumonteil
(1992)discussed the exact conventional K-factor formulae for
braced and unbraced columns and check the accuracy of K-
factor approximate equations. Dumonteil (1999)discussed
some historical K-factor equations for braced and unbraced
columns. He checked the accuracy with the exact form for the
French “CM 66” approximate formulae for braced and un-
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braced columns, Donnell’s approximate formulae and New-

mark’s approximate formulae for braced column.

The analysis of beams on elastic foundation was well estab-

lished in the literature. The differential equation approach

used by Hetenyi (1946) is practical for engineering purposes.

In structural buildings, some elements may be interacting with

elastic foundation; such interaction affected the accuracy of K-

factor calculation. This paper presents the exact and approxi-

mate modified K-factor equations for braced and unbraced
column in frame with girders on elastic foundation. The gird-
ers far ends are modeled as rigid, fixed, and hinged. The mod-
ified K-factor exact formulae derived by using two approach-
es, the first approach considered the parameter pn which is
derived using subassembly model (Fig.1). The value of pa-
rameter pn is varying with frame’s case (braced or unbraced),
elastic foundation stiffness parameter A\, and girders far ends
condition. The second approach considered the conventional
alignment charts for prismatic girders, so that the original G
factor can’t use directly. The present study developed G factor
used in US codes alignment charts by depending on stiffness
parameter yn which is derived for girders on elastic founda-
tion with various far end conditions by dividing the bending
stiffness of girder on the elastic foundation on the bending

stiffness of ordinary member. The proposed modification to G

factor allow to use the US cods alignment charts for column in

frame with girders on elastic foundation and various far end
conditions. The exact modified K-factor formulae are derived
according to the following assumptions:

1. Columns buckle simultaneously.

2. All members are elastic and prismatic cross section.

3. All girders have negligible axial force.

4. All column ends are rigid, while the girders far end are

modeled as rigid, fixed or hinged.

All columns have equal stiffness parameter LyP/EI .

6. For braced frame, angles of rotation at opposite girder
ends have an equal value and produce single bending
curvature as shown in Fig.1(B); whereas for unbraced
frame, angle of rotation at opposite girder ends also have
equal value and but produce reverse bending curvature as
shown in Fig.1(C).

7. Distribution of resistance of joint is proportion to 1/L of
two columns in above and below the joint.
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Fig.1.Subassembly model for a frame with girders on elastic foundation,
(A) modified model, (B) modified braced frame subassembly model, (C)
modified unbraced frame subassembly model
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Fig. 2. Alignment charts of the US National cods, (A) braced frame, (B)
unbraced frame

2 EXACT MODIFIED K-FACTOR EQUATIONS (EXACT FIRST
APPROACH)

The differential equation of girder on elastic foundation can be

given as:
4
EI%+ksy:O 1)

From the solution of Eq.1, the stiffness coefficients of girder on
elastic foundation (S &Sc ) can be obtained as follow:

= Sinh(4) Cosh(1)-Sin(4) Cos(1)

2
Sinh?(4) - Sin%(4) @

) Sin(4) Cosh(A)—Sinh(1) Cos(A) 3
Sinh?(1)-Sin?(1)

Where parameter A is given by:

k
A=4== 4
4El “)

Where, ks is an elastic foundation parameter

2.1 Braced frame

At the buckling load, the columns have an axial force parame-
ter

=(%)
K
and the stability functions S, and SC, stated else-

where(Duan and Chen, 1988, Duan and Chen, 1989) as shown
in Eq.5 and Eq.6:

() 2] ()

2 2@5(2} - (l
K) (K
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By using the slop-deflection equations for the subassembly
model for column in braced frame on elastic foundation with
variable girders far end conditions, the following relation can
be achieved:

(6)

GBSCx By +GBSk o @
B1+GASy  GASCk |
Eq. 7 can be written as:
P By +Sk b b +S2 —SC% =0 (8)
GA GB GA GB

The basic equation for the stability analysis of sway-prevented
frame on the elastic foundation with variable girder far ends
conditions resulted from Eq.8 can be given as:

GAGB (ﬂ'/E)z +[%+E][l—t ﬂ//RE J+
an‘n )

BBz B B B )
2tan!7r/_2K!_1:O
7l K
2(t)
LJc
Where G = - (10)
(%),
The parameter {3, for braced frame can be given as:
For rigid girder far end:
T o _ Cosh( 4, )+ Cos(4,) 11
Pn =S =3Cn =24 Sinh( A, )+ Sin( 4, ) (11)
For fixed girder far end:
— Sinh(4, ) Cosh(4,)-Sin(4,) Cos(A
By =50 =24, m(n)-osz(n) 'mz( n) Cos(4p) (12)
Sinh“(4,)-Sin“(4,)
For hinged girder far end:
<2 o2 2 2
B, = Sh —_SCn o, Cosh“(Ap )—Cos“ (1) (13)
Sh Sinh(4, ) Cosh( 4y )—Sin(4,) Cos(A,)

2.2 Unbraced frame

By using the slop-deflection equations for the subassembly
model for column in unbraced frame with girders on elastic
foundation have variable girders far ends condition, the fol-
lowing relation can be obtained:

B2
SC —=+S —(Sk +SC
K o oK (Sk k)
B +Sk SCk —(Sk +SCk) =0 14
GA
1( = 2
—(SK +SCK) —(SK +SCK) 2 SK +SCK —E(?)

Eq.14 can be written in the following form:

M[(lr ~ 28y - zscK} + (% +ﬁ][(scK P —(sk P + Sk (%]2] +

GA GB K GB

(2] 57 -(sccP)-0

(15)

The basic equation for stability analysis of unbraced frame on
elastic foundation with variable girder far ends conditions
resulted from Eq.15 can be given by:

cacBle/Kf ~pip, _ xIK (16)
(MJGAGB tan(z/ K)
2

The parameter 3, for unbraced frame can be given as:
For rigid girder far end

Cosh( 4, )—Cos(4,)

3 = 17
P =3n+8Cn = 2hn g Y sin(4) (7
For fixed girder far end
_ Sinh(4,, ) Cosh(4,)-Sin(4,) Cos(A
By =5 =24, m(n)-osz(n) 'mz( n) Cos(4p) (18)
Sinh“(4,)-Sin“(4,)
For hinged girder far end
2 2 2 2
B = S —_SCn _ 24, Cosh“(4,)—Cos“(4,) (19)
Sh Sinh( 4, ) Cosh( 4, )—Sin(4,) Cos(4y)
2.3 Simplified form of parameter gn

For the practical and design purposes, simplified formulae of
parameter B, were developed by curve-fitting as following:

2.3.1 When An< 4
2.3.1.1 The case of column in braced frame
Rigid far ends

B =2+0.322, —0.71422 +0.5523 —0.074.2% (20)
Fixed far ends

Bn =4+0.22 —0.4273 +0.3173 —0.0397; (21)
Hinged far ends

Bn = 3-0.1042, 011223 +0.29513 —0.046 17 (22)
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2.3.1.2 The case of column in unbraced frame
Rigid far ends

Bn = 6+0.02587, —0.0662 +0.0458423 (23)
Fixed far ends

Bn =4+0.22, —0.422% +0.3123 -0.0392; (24)
Hinged far ends

Bn =3-0.1044, —0.11242 +0.323 —0.04742% (25)

2.3.2 WhenAnz=24

In this case, the close form solution (Eq.s 11, 12, 13, 17, 18 and
19) gives the following result:

Cosh( 4y )+Cos(4,) _ Sinh(4y) Cosh(4y)-Sin(4,) Cos(4y)
Sinh(4, )+ Sin(Z,) Sinh2(4,) - Sin2(4,) h
Cosh( 4, ) - Cos(4y ) Cosh? (A, )—Cos?(Ay) ~
Sinh(Zy)+Sin(4y)  Sinh(4,) Cosh(A,)—Sin(4,) Cos(4y)

(26)

2.3.2.1 Case of column in braced or unbraced frame

The parameter B, can be obtained by according to Eq. 26.
Then, Eq.s 11, 12, 13, 17, 18 and 19 can be written as shown in
Eq.27:
rigid far ends
Bns fixed far ends » =24,
hinged far ends

@)

as US National codes equation (AISC, 2012, AISC, 1989, ACI,
2014, AASHTO, 1989) for sway-allowed column.

3 MODIFIED ALIGNMENT CHART (EXACT SECOND
APPROACH)

The modified G -factor equation is proposed by Chen at el
(1993a, 1993b) for the case of column in frame restrained by
tapered girders using stiffness modification parameter. This
paragraph introduces a modified G -factor used in the current
alignment charts of US National codes which enable the de-
signer to calculate the modified K-factor by direct use of the
alignment charts (Fig. 2).The G factor equation which consid-
ered the effect of elastic foundation and girders far end condi-
tion is given as:

ZECICILC
Zy Eglg/Lg

Wherey : is girder on elastic foundation stiffness modification
parameter.

G= (30)

3.1 Exact form of stiffness modification parameter

The girder stiffness modification parameter vy is calculated for
braced and unbraced frames by dividing the bending stiffness
of girder on elastic foundation on the bending stiffness of or-
dinary girder not interacted with elastic foundation. The y pa-
rameter is considered the effects of girder far end condition
and elastic foundation stiffness.

For braced columns
When girder far end is rigid

S-sC Cosh( 4, )+ Cos( 2
y = :n_(n)_(n) (31)
2 Sinh( 4, )+ Sin(4,)
From Eq.s 20 to 25, it can be concluded that, when the parame-
ter A, approach to zero, Eq.s 20 to 25are reducing to the follow-  \when girder far end is fixed
ing form: S sinh(4,) Cosh(,)-Sin(4,) Cos(A
For braced column 7=%=/ln Inh(2n ) _ OZ (4n) _mz( n) Cos(ha) (32)
2 for rigid far end Sinh*(4n ) =Sin"(4n )
Bn =14 for fixed far end 28)  \When girder far end is hinged
3 for hinged far end —2 —9 2 2
y- S -sC _ Cosh“( A, )—Cos“(4,) (33)
25 " Sinh(4,) Cosh( 4, )—Sin(4,) Cos(4,)
For unbraced column
6 for rigid far end For unbraced columns
Bn=14 for fixed far end (29)  When girder far end is rigid
3 for hinged far end _S+SC Ay Cosh(y )+Cos(A,) (34)
6 3 Sinh(Ay)+Sin(4,)
Eqg.s 28 and 29 considered the effects of far end conditions of . o
prismatic girders without interaction between frame and elas- VWhen girder far end is fixed
tic foundation. In the case of sway-prevented column with S Jp Sinh(Zy) Cosh(Z,)—Sin(4,) Cos(4,) (35)
rigid girders far ends, Eq. 28 given that ;= f,=2, when substi- "~ _ 3 Sinh2(2, ) - Sin%(4,,)
tute these beta values in Eq. 9 the resulted equation is as same
as the US National codes equation (AISC, 2012, AISC, 1989, When girder far end is hinged
ACI, 2014, AASHTO, 1989).Also,Eq.29 given that ;= 3.=6 for §2 §2 1 Cosh2( 4 Cos2(
sway-allowed frame with rigid girders far ends and when ap-  y=="——~—="0_ 0sh”(%n )= ?S (4n) (36)
ply these beta values inEq.16, the resulted equation is as same 6S 3 sinh(2Z,) Cosh(4,)-Sin(4,) Cos(4,)
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3.2 Simplified form of stiffness modification parameter

For the practical and design purposes, a simplified formulae of
stiffness modification parameter y can be obtained by compare
Eq.s 11,12,13,17,18 and 19 with Eq.s 31 to 36.The following
relation between parameter 3 and parameter y can be con-
cluded as follow

For braced frame :g (37)

For unbraced frame y :% (38)

By using Eq.s 37and 38, the simplified form of stiffness modi-
fication parameter can be obtained as:

3.2.1 When An< 4
3.2.1.1 The case of column in braced frame

Rigid far end y, =1+0.162, ~0.357.43 +0.27543 —0.037 3 (39)

Fixed far end y, = 2 +0.14, -0.2143 +0.15543 - 0.0194 1, (40)

Hinged far end y, = 1.5-0.0524, —0.056 42 +0.147543 —0.0234% (41)

3.2.1.2 The case of column in unbraced frame

Rigid far end y,, = 1+0.00432, —0.01112 +0.007643 (42)
Fixed far end y,, =0.66 +0.0344, —0.07142 +0.05243 —0.006547  (43)
Hinged far end y, =0.5-0.01734, —0.0187.42 +0.0543 —0.0079.4%

(44)

3.2.2 WhenAnz24
3.2.2.1 The case of column in braced frame
The parameter y, can be obtained by substitute Eq. 37 in Eq.27

rigid far end
vni fixed far end =21, (45)

hinged far end

3.2.2.2 The case of column in unbraced frame
The parameter y, can be obtained by substitute Eq. 38 in Eq.27

rigid far end

vny fixed far end {=21,/3 (46)

hinged far end

When parameter A\, approach to zero (the case of no interac-
tion between girder and elastic foundation) Eq.s 39 to 44is re-
ducing to the following form:

For braced column

1 for rigid far end

For unbraced column
1 for rigid far end
7yn=12/3 for fixed far end
0.5  for hinged far end

(48)

Eq.s 47 and 48aresame as the stiffness modification parameter
proposed by Chen et al (1993b) for prismatic girders and
SSRC-Guide(Johnston, 1979).Fig.3 shows a graphing of modi-
fication stiffness parametery, for exact closed form solution
(Eq.s 31 to 36) and simplified form solution (Eq.s 39 to 46).

Braced frame

Braced frame : 7
E Fixed far end

. E | Rigid far end

Exact form

—4A— Simplified form

TR Py STITI TR ITI
510 ° o 4

Modification factor (y)
T
Modification factor (y)

——— Exactform
—A— Simplified form

Lonlon bl b b b
5 8 7 8 3 1

AR FRURL SRTI FRTT NI TU NAATA |
o 1t 2z 3 4 5 8 1 &

Foundation parameter (1)

]

Foundation parameter (A)

Fig. (3-a) Fig. (3-b)
0 s
— z— Braced frame —_ Ulll:ll;‘dt‘f‘(l frame
& . Hinged far end & Rigid far end
= =
2 2
o c Q
S &
g EE
= = =
= =
E 2
i3 Exact form
= f Exact form = P
B 4 Simplified form 7 —4A— Simplified form
Foundation parameter (1) Foundation parameter (1)
Fig. (3-¢) Fig. (3-d)
4 4
—_ Unbraced frame — Unbraced frame
X Fixed far end & Rigid far end
= s =oa
Q o)
) -
9 Q
B £
=) =)
9 g
s s
Q O
e} T [
Q o]
S Exact form s Exact form
—A— Simplified form —A— Simplified form
o Lnln b bbb b, o Lol el o e i

) )
Foundation parameter (1)

Fig. (3-f)

Foundation parameter (L)
Fig. (3-¢)

Fig.3. The relation between A and y

4 APPROXIMATE MODIFIED K-FACTOR PROPOSED
FORMULAE

The following formulae involved modifying Newmark formu-

yn=12  for fixed far end (47) lafor braced frame and French “CM 66 formula for unbraced
15 for hinged far end frame(Dumonteil, 1992),the modified approximate K-factor
proposed equations in term of B, can be given as:
IJSER © 2014
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The exact Eq.s 9, 16 and approximate Eq.s 49 and 50 used
when the two adjacent girders in one joint have same value of 0.65
elastic foundation parameter A. For the general case when the
two adjacent girders in one joint have different value of elastic “
foundation parameter A, the following formulae can be used: 055 f3 Cas. tamdacs

For braced column = i R Y R NPT FUT PR NS FETT A I

Proposed, Eq. 49
Eq. 9, lamda=0

Eq. 9, lamda=2
0.60
Eq. 9, lamda=4

For braced column girder far end condition are shown bellow.
E:\/(GA+O.205/31) (Gg +0.2055,) “9)

(GA+041ﬂ1) (GB+O41ﬂ2) 1-00_III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III|:
0.95 E— —E
For unbraced column vo0 F- E
m+24(%+ei)+7.5 085 E_ _E
<_ | BB B B = 3
K= 5 G (50) . = 3
6(—A+-B)475 K “*F E
B B o5 F- 3
0.70 :— _E

Eq. 9, lamda=6

freet]

[ n NN

. __ 0-500 1 2 3 4 5 6 7 8 9 10 1
ra ’(GA +0.41) (%+0.41) (51) Ga
(G4 +082) 65 +082)
0.95 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_
For unbraced column 0.00 E
< \/1.6GAGB_+ 4(Gp+Gg)+75 =2) oss - -
GA+GB +75 0.80 :_ _:
Eg.s 51, and 52 can be considered as approximate solution of K ors ;— —;
the following general case equations (Eqg.s 53 and 54). 5 E_ _E
For braced column E 3
065 - ——— Proposed, Eq. 49 -]
’ = —=f=— Eq. 9, lamda=0 -
A ~D _ A D v v, F —@— Eq.9 lamda=2 _:
GA GB(ﬂ/K)2+[GA+GB] o mlK | 2tan(7r/_2K)_l=O os L
tan(;r/ K) nlK 0.55 ‘s“ —&— Eq.9 lamda=6
: —%— Eq. 9, lamda=8 ]
(53) 0_50IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:
(o} 1 2 3 4 5 6 7 8 9 10 11
Ga
For unbraced column
GAGB(_ﬂ/K_)Z_36_ ﬂ/K_ =0 (54) 0-95_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII:
6GA GB tan(z/ K) 0.00 - ) 3
When the two adjacent girders in one joint have same value of 085 ;— —;
elastic foundation parameter A, Eq.s 49 and 50 can be written 080 E- 3
in term of v, as: — F 3
For braced column K o 3
R _ (GA +O41}/1) (GB +041}/2) (55) 0.70 :— —:
(Ga +0.82y;) (Gg +0.82y5) - — ProposedEqds ]
0.65 — —=f=— Eq. 9, lamda=0 _:
—4&— Eqg. 9, lamda=2 =
For unbraced column 060 —@— £q.9 lamda=s 3
) —4&— Eq. 9, lamda=6 —
1'6GAGB +4(%+&)+75 0.55 —%— Eq. 9, lamda=8 —:
R: }/l}/ZG G}/l }/2 (56) 0_50IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:
7A+78+7.5 (o} 1 2 3 4 5 6 7 8 9 10 11
I4 Ga

) Fig. 4. The relation between modified effective length factor and GA for
Graphing of Eg.s 9 and 49 for the case of braced _frame _and braced column, (a) for rigid girders far end, (b) for fixed girders far end, (c)
Eqg.s 16 and 50 for the case of unbraced frame with various for hinged girders far end, GA=GB, A1=A2=A3=A4=A
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1-00:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_ 1-00

0.955— 0.95 3
o.gof— 0.90

0.855— 0.85

o.sof— 0.80

0.755— K

Proposed, Eq. 49

Eq.9, lamda=0
Proposed, Eq. 49

Eq. 9, lamda=2

Londvodbeoddndooe oo b b b
ey
<}
N
a

P IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

- -+
—=f=— Eq. 9, lamda=0 o
—@— Eq. 9 lamda=2 ® Eq.9, lamda=4
060 —@— Eq.9 lamda=4 —4&—  Eq.9, lamda=6
0.55 —A—  Eq. 9, lamda=6 o) Ed. 9. lamda=s
TTE —%— Eq.9,lamda=8 =
0.50 L1t I 111 I 111 I 1111 I 111 I 111 I 111 I 1111 I 111 I 111 I 111 0.50 1
(o] 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 1
Ga Ga
0.95 [TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT]
0.95 TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT] — PR —
E S Saad = 0.90 - —
0.90 — —] - B
c 3 0.85 — —
0.85 [— — r m
c 3 0.80 —
0.80 [— — r m
c = — o075 —
0.75 [— —] K E 3
e 3 0.70 & —
0.70 |— — = ——— Proposed, Eq. 49
- - 0.65 - —=— Eq.9 lamda=0 _-
0.65 [— — - —@— Eq. 9, lamda=2 7
E — proposed, Eq. 49 T - Eq. 9, lamda=4 u
—@— . 9, lamda= -
- —=f=— Eq. 9, lamda=0 1 0.60 9 —
0.60 i —4&— Eq. 9, lamda=6 T
—<— Eq.9, lamda=2 —
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Fig.5. The relation between modified effective length factor and GA for  Fig. 6. The relation between modified effective length factor and GA for
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5 [ILLUSTRATIVE EXAMPLES

This section presents two examples, the first example is used
to illustrate the calculation of modified K-factor for braced
frame using exact equations and US codes alignment chart,
and then check the accuracy and the validity of the modified
K-factor proposed equations. The solution is obtained using
the exact and approximate B, y, and G factors. Some girders
far end are modeled as fixed and hinged to prevent the side-
sway. The second example is provided to illustrate the calcula-
tion of modified K-factor for unbraced frame. Exact equations
and US codes alignment chart are adopted to check the accu-
racy of the approximate proposed equations, also the solution
was carried out using B, y, and G factors for the case of exact
and approximate solution.

Example 1

A braced frame supported by girders on elastic foundation as
shown in Fig. 10. The moment of inertia and element length
are given in Table.1 below. The modulus of elasticity (E) was
taken as a constant value for each element. The elastic founda-
tion stiffness parameters are Aag=7, Asc= 7, Any=3 and Ags=2.5.
Determine the effective length factor for columns DA, FB, HC
and QH by using two approaches for exact and approximate
solution.

TABLE 1
LENGTH AND MOMENT OF INERTIA FOR ELEMENTS OF EXAMPLE 1

Fig. 9. The relation between modified effective length factor and GA for
unbraced column, (a) for rigid girders far end, (b) for fixed girders far end,
(c) for hinged girders far end, GA=GB, A1=A2=N/4, A3 = M= A

Element AB BC AD BF CH DF FH
[ 51 51 31 4 251 41 4l
L 2L L 15L 15L 15L 2L L

Element HI DM FN HQ MN NQ QS
[ a4 200 31 2l [ o
L L L L L 2L L L

Fig.10. Frame of example 1

Solution : The calculation of exact and approximate values of
parameter 3 using Eq.s 11 to 13 and Eq.s 20, 21, 22, and 27 re-
spectively are illustrated in Table 2, Table 2also shows the ex-
act values of parameter y using Eq.s 31 to 33 and approximate
y values by depending on Eq.s39, 40, 41, and 45.
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TABLE 2
EXACT AND APPROXIMATE VALUES OF [3 AND y OF EXAMPLE 1

A Girderfarend pExact [ App. yExact yApp.
0 Rigid 2 2 1 1

7 Rigid 14 14 7 7

3 Hinged - - 2.982 2.96
25 Fixed - - 2592 2597

The values of G and G factors for each frame joint are tabulat-
ed in Table 3 using Eq. 10 and Eq. 30 respectively. Parameter y
illustrated in Table 2 used in calculations of factors G exact
and G approximate.

TABLE 3
G AND G OF EXAMPLE 1

Joint G G Exact G Approximate

A 0.8 0.1143 0.1143
D 2 2 2

B 0.356  0.0508 0.0508
F 0.945 0.945 0.945
C 0.34 0.0476 0.0476
H 0.458 0.23 0.231
Q 1 0.5568 0.556

For column DA, exact solution using Eq. 9
2£(ﬂ'/?)2+ g+%] 1 _7IK +2tan(¢r/2K)_
28 2 14

tan(;r/E) 1K
Using iteration exact K =0.689 or by using Eqg. 53 exact
K=0.689. By using alignment chart with direct use of G,
K =0.689
Approximate solution using Eq. 49

1=0

=0.692

— [(2+0.205%2) (0.8 +0.205* 14
K =
(2+0.41%2) (0.8 +0.41* 14)

Approximate solution using Eq. 51

% \/(2 +0.41) (01143+041) _ 0.602

) (2+0.82) (0.1143+0.82)
Approximate solution by using Eq.55

=0.692

r J (2+0.41%1) (0.8+0.41%7)

(2+0.82%1) (0.8+0.82*7) _
For column FB, exact solution using Eq.9 or Eq.53 K =0.637. By
using alignment chart with direct use of G,K=0636
Approximate solution by using Eq. 49 or 51 or 55 K =0.637.
For column HC, exact solution using Eq.53 K =0.56. By using
alignment chart with direct use of G, K =0.56 Approximate
solution using Eq. 51 K =0.567 _
For column QH, exact solution using Eq.53 K =0.65. By using
alignment chart with direct use ofG, R=0.65_ Approximate
solution using Eq. 51 K = 0.654

TABLE 4
THE SUMMERY OF THE RESULTS OF EXAMPLE 1

Column DA FB HC QH
Kexactequation  0.689 0.637 0.56 0.65
Kalignmentchart 0.689 0.636 056 0.65

K approximate 0.692 0.637 0.567 0.654
Example 2

For the unbraced frame shown in Fig.11, determine the effec-
tive length factor for columns HA, JB, MC, ND, QF, RH, VN
and WP by using two approaches for exact and approximate
solution. The elastic foundation stiffness parameters are Aas=6,
A&c= 6, A\cp=6, A= 2 and Anp=3. The values of moment of iner-
tia and elements length are shown in Table 5 below and the
modulus of elasticity (E) of each element is constant.

TABLE 5
LENGTH AND MOMENT OF INERTIA FOR ELEMENTS OF EXAMPLE 2

Element | L Element | L
AB 31 3L DN 41 5L
BC 3l 4L FH 21 2L

CD 3l 3L HJ 4 3L
AH 41 5L M 41 4L

BJ 6l 5L MN 41 3L
FQ I 3L QR 21 2L
HR 31 3L RT 21 3L
T 4 3L TU 21 4L
MU 4 3L UV 21 3L
NV 4 3L VW 21 2L
PW I 3L

Fig.11. Frame of example 2

Solution: The calculation of exact and approximate values of
parameter 3 according to Eq.s 17 to 19 and Eq.s 23, 24, 25, and
27 respectively are illustrated in Table 6, also the table shows
the exact values of parameter y using Eq.s 34 to 36and approx-
imate y values according toEq.s42, 43, 44, and 46.
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TABLE 6
EXACT AND APPROXIMATE VALUES OF [3 AND y OF EXAMPLE 2

A Girder farend {Exact B App. yExact yApp.
0 Rigid 6 6 1 1

6 Rigid 11.92 12 1.99 2

3 Rigid 6.717 6.72 112 112
2 Rigid 6.15 6.154  1.025  1.025

The values of G and G factors for each frame joint are tabulat-
ed in Table 7 using Eq. 10 and Eq. 30 respectively. Parameter y
illustrated in Table 6 used in calculations of factors G exact
and approximate.

TABLE 7
G AND G OF EXAMPLE 2

Joint G Exact G App. Joint G Exact G App.
A 0.8 0.4 0.4 M 1.086 1.086 1.086
B 0.686 0.343 0.343 N 0.914 0.87 0.87
C 0.686 0.343 0.343 P 0.334 0.298 0.298
D 0.8 0.4 0.4 Q 0.334 0.334 0.334
F 0.334 0.326 0.326 R 0.6 0.6 0.6
H 0.77 0.763  0.763 \V 0.8 0.8 0.8
J 1.086 1.086 1.086 W 0334 0334 0.334

For column HA, exact solution using Eq.54R:£185._By using
alignment chart with direct use of G, K=1.185
approximate solution using Eq. 52 given as:

R_\/1.6*0.763*0.4+4(O.763+O.4)+7.5
0.763+0.4+7.5
For columns JB and MC, Exact solution using Eg. 16

=1.207

1086%0.686(r /K[ —6*11.92 /K

(6 +11.92

](1.086 +0.686 ) tan(z/ K)

Using iteration exact K= 1.2137 or by using Eqg. 54 exact
K=1.2137. By using alignment chart with direct use of G,
K =121

Approximate solution using Eq. 50 given as:

* *
B 57.6 61*.(1216920.686 124 1.%86 N 2162;2 )+7.5
K= (1086 0.686, - =1.244
11.92

Approximate solution using Eq.52 given as:
p— *
m =\/1.6 1.068*0.343+4(1.068+0343)+75 _,

1.068 +0.343+7.5
Approximate solution using Eq. 56 given as:

* *

B 1.6 11.8216990.686 L4 1.0186 N 01.6;396 )+7.5
K= 1.086 , 0.686 =1.244

—+——+75

1 1.99

For column ND, exact solution using Eq.54 K=1.2. By using

alignment chart with direct use of G, K=1.2 approximate

solution using Eq. 52 K =1.224

For column QF, exact solution using Eq. 16 given as:
0.334*0.334(7:/R)2—6*6.15 TlK
6 +6.15

&

=0

j(o.334+o.334) tan(z / K)

Using iteration exact K= 1.1091 or by using Eq. 54 exact
K'=1.1091. By using alignment chart with direct use of G,
K =1.1 approximate solution using Eq. 50 or 52 or 56 K=1.124
For column RH, exact solution using Eq.54 K=1.215. By using
alignment chart with_direct use of G, K=121 approxmate
solution using Eq. 52 K=1.242 .
For column VN, exact solution usingEq.54 K =1.272. By using
alignment chart with direct use of G, K =1.27 and approxi-
mate solution using Eq. 52 K =1.292

For column WP, exact solution using Eq. 16

0.334*0.334(;:/R)2—6*6.717 Tl K
6+6.717
S

j(o.334+o.334) tan(z / K)

Using iteration exact K= 1.1046 or by using Eq. 54, exact
K =1.1046. By using alignment chart with direct use of G,
K=1.105

Approximate solution using Eq. 50

57.6%0.334%0334 0334 0334
- or6717 g eyt
] 0.334 0334 =1119
(7 ———)+75
6.717

Approximate solution using Eq. 50 or 52 or 56 K=1.119

TABLE 8
THE SUMMERY OF THE RESULTS OF EXAMPLE 2

Column HA JB MC ND
Kexact equation 1185 1.2137 1.2137 1.2
Kalignmentchart 1.185 1.244 1244 1.2
K approximate 1.207 1.21 1.21 1.224
Column QF RH VN WP
Kexactequation  1.1091 1.215 1.272 1.1046
Kalignment chart 1.1 121 127 1.105
K approximate 1124 1242 1292 1.119

6 THE SUMMARY AND CONCLUSIONS

This paper considered the determination of the effective
length factor for column in braced and unbraced frames with
girders on elastic foundation. The girders far ends were mod-
eled as rigid, fixed or hinged. The exact formulae of the modi-
fied K-factor have been derived using two approaches; in the
first solution technique of the modified effective length factor
calculations were depended on parameter . The Exact closed
form and the simplified approximate form of parameter p
have been derived. In the second solution approach, the calcu-
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lation described using girder stiffness modification parameter
vy which provided the ability of direct use of U.S. National
codes alignment charts. Exact form and simplified form of
parameter y have been investigated. For practical use, some
approximate formulae of modified K-factor with high accura-
cy are proposed. Two examples were solved to illustrate the
calculation method and solution accuracy.

Based on the results that obtained in the current study, several
conclusions can be drawn. These conclusions are summarized
as follows:

1- The two solution approaches of calculating the modi-
fied K-factor using parameter 3 or y gives same modi-
fied K-factor results.

2- Fig. 3 shows an excellent agreement between the
closed form of parameter y (Eq.s 31, 32, and 33) and
simplified form (Eq.s 39, 40, 41, and 45) for braced
frame, also, for unbraced frame the figure indicated
an excellent agreement between closed form (EqQ.s
34,35, and 36) and simplified form (Eq.s 42, 44, 43 and
46). Thus, simplified form of parameter y is practical
for design purposes.

3- In the second solution approach, the US National
codes alignment charts gives simple exact solution of
Eg. 53 and Eq. 54 without need iteration.

4-  Fig.s 4, 5, and 6 shows excellent agreement between
the modified K-factor proposed equation (Eq. 49) and
exact solution using Eqg. 9 for the case of braced frame.
Also, for the case of unbraced frame, Fig.s 7, 8, and 9
show excellent agreement between the exact solution
using Eqg. 16 and approximate proposed solution us-
ing Eq. 50. The percentage decrease in the modified
K-factor for both braced and unbraced frame become
more significant as the elastic foundation stiffness pa-
rameter (A) increases.

5- Results summary of example 1 and example 2
showed that the percent of error in modified K-factor
values between exact and approximate solution for
braced frame is less than 1.25 %, while for unbraced
frame is less than 2.23 %.
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